Химическое строение и свойства витамина B1. Витамин в1 (Tиамин. Антиневритный витамин) Значение пиримидинового компонента

Источники

Черный хлеб, злаки, горох, фасоль, мясо, дрожжи.

Суточная потребность

Строение

В составе тиамина определяется пиримидиновое кольцо, соединенное с тиазоловым кольцом. Коферментной формой витамина является тиаминдифосфат .

Строение витамина В 1

Строение тиаминдифосфата

Метаболизм

Всасывается в тонком кишечнике в виде свободного тиамина. Витамин фосфорилируется непосредственно в клетке-мишени. Примерно 50% всего В 1 находится в мышцах, около 40% – в печени. Единовременно в организме содержится не более 30 суточных доз витамина.

Биохимические функции

1. Входит в состав тиаминдифосфата (ТДФ), который

Пример реакции с участием тиаминдифосфата (пентозофосфатный путь)

2. Входит в состав тиаминтрифосфата , который изучен еще недостаточно. Имеются разрозненные сведения об участии ТТФ в передаче нервного импульса, в генерации клеточного сигнала, в реакциях клеточного биоэлектрогенеза, в регуляции активности ионных каналов.


Гиповитаминоз B1

Причина

Основной причиной является недостаток витамина в пище, избыток алкоголь -содержащих напитков, которые снижают всасывание и повышают экскрецию витамина, или углеводных продуктов, повышающих потребность в тиамине.

Также причиной гиповитаминоза может быть потребление сырой рыбы (треска, форель, сельдь), сырых устриц, поскольку в них содержится антивитамин – фермент тиаминаза , разрушающий витамин. В кишечнике человека присутствует бактериальная тиаминаза.

Клиническая картина

Болезнь "бери-бери " или "ножные кандалы" – нарушение метаболизма пищеварительной, сердечно-сосудистой и нервной систем из-за недостаточного энергетического и пластического обмена.

Со стороны нервной ткани наблюдаются:

  • полиневриты : снижение периферической чувствительности, утрата некоторых рефлексов, боли по ходу нервов,
  • энцефалопатия :
    - синдром Вернике – спутанность сознания, нарушение координации, галлюцинации, нарушение зрительной функции,
    - синдром Корсакова – ретроградная амнезия, неспособность усваивать новую информацию, болтливость.

Со стороны сердечно-сосудистой системы отмечается нарушение сердечного ритма, боли в сердце и увеличение его размеров.

В желудочно-кишечном тракте нарушается секреторная и моторная функция, возникает атония кишечника и запоры, исчезает аппетит, уменьшается кислотность желудочного сока.

B 1 содержит атомы серы , поэтому он был назван тиамином . В химической структуре его содержатся два кольца – пиримидиновое и тиазоловое, соединенных метиленовой связью. Обе кольцевые системы синтезируются отдельно в виде фосфорилированных форм, затем объединяются через четвертичный атом азота .

Тиамин хорошо растворим в воде . Водные растворы тиамина в кислой среде выдерживают нагревание до высоких температур без снижения биологической активности . В нейтральной и особенно в щелочной среде витамин B 1 , наоборот, быстро разрушается при нагревании. Этим объясняется частичное или даже полное разрушение тиамина при кулинарной обработке пищи, например выпечке теста с добавлением гидрокарбоната натрия или карбоната аммония . При окислении тиамина образуется тио-хром, дающий синюю флюоресценцию при УФ-облучении. На этом свойстве тиамина основано его количественное определение.

Витамин B 1 легко всасывается в кишечнике, но не накапливается в тканях и не обладает токсическими свойствами. Избыток пищевого тиамина быстро выводится с мочой . В превращении витамина B 1 в его активную форму – тиаминпирофосфат (ТПФ), называемый также тиамин-дифосфатом (ТДФ), участвует специфический АТФ-зависимый фермент тиаминпирофосфокиназа, содержащаяся главным образом в печени и ткани мозга. Опытами с меченным 32 Р АТФ доказан перенос на тиамин целиком пирофосфатной группы в присутствии фермента . ТПФ имеет следующее строение:

Если витамин B 1 поступает с пищей в виде ТПФ, то пирофосфатная группа отщепляется от него под действием кишечных пирофосфатаз.

При отсутствии или недостаточности тиамина развивается тяжелое заболевание – бери-бери, широко распространенное в ряде стран Азии и Индокитая, где основным продуктом питания является рис. Следует отметить, что недостаточность витамина B 1 встречается и в европейских странах, где она известна как симптом Вернике, проявляющийся в виде энцефалопатии, или синдром Вейса с преимущественным поражением сердечно-сосудистой системы. Специфические симптомы связаны с преимущественными нарушениями деятельности и сердечно-сосудистой, и нервной систем, а также пищеварительного тракта. В настоящее время пересматривается точка зрения, что бери-бери у человека является следствием недостаточности только витамина В 1 . Более вероятно, что это заболевание представляет собой комбинированный авитаминоз или полиавитаминоз, при котором организм испытывает недостаток также в рибофлавине , пиридоксине , витаминах РР , С и др. На животных и добровольцах получен экспериментальный авитаминоз B l . В зависимости от преобладания тех или иных симптомов различают ряд клинических типов недостаточности, в частности полиневритную (сухую) форму бери-бери, при которой на первый план выступают нарушения в периферической нервной системе. При так называемой отечной форме бери-бери преимущественно поражается сердечно-сосудистая система, хотя отмечаются также явления полиневрита. Наконец, выделяют остро протекающую кардиальную форму болезни, называемую пернициозной, которая приводит к летальному исходу в результате развития острой сердечной недостаточности. В связи с внедрением в медицинскую практику кристаллического препарата тиамина летальность резко сократилась и наметились рациональные пути лечения и профилактики этого заболевания.

К наиболее ранним симптомам авитаминоза В 1 относятся нарушения моторной и секреторной функций пищеварительного тракта: потеря аппетита, замедление перистальтики (атония) кишечника, а также изменения психики, заключающиеся в потере памяти на недавние события, склонности к галлюцинациям; отмечаются изменения деятельности сердечно-сосудистой системы: одышка, сердцебиение, боли в области сердца. При дальнейшем развитии авитаминоза выявляются симптомы поражения периферической нервной системы (дегенеративные изменения нервных окончаний и проводящих пучков), выражающиеся в расстройстве чувствительности, ощущении покалывания, онемения и болей по ходу нервов. Эти поражения завершаются контрактурами, атрофией и параличами нижних, а затем и верхних конечностей. В этот же период развиваются явления сердечной недостаточности (учащение ритма, сверлящие боли в области сердца). Биохимические нарушения при авитаминозе В 1 проявляются развитием отрицательного азотистого баланса, выделением в повышенных количествах с мочой аминокислот и креатина, накоплением в крови и тканях α-кетокислот, а также пентозосахаров. Содержание тиамина и ТПФ в сердечной мышце и печени у больных бери-бери в 5-6 раз ниже нормы.

Биологическая роль. Экспериментально доказано, что витамин B 1 в форме ТПФ является составной часть минимум 5 ферментов , участвующих в промежуточном обмене веществ . ТПФ входит в состав двух сложных ферментных систем – пируват - и α - кетоглутарат дегидрогеназных комплексов , катализирующих окислительное декарбоксилирование пировиноградной и α-кетоглутаровой кислот . В составе транскетолазы ТПФ участвует в переносе гликоальдегидного радикала от кетосахаров на альдосахара (см. главу 10). ТПФ является

Витамин В1 , был первым витамином, выделенным в кристаллическом виде К. Функом в 1912 г. Позже был осуществлен его химический синтез. Свое название - тиамин - получил из-за наличия в составе его молекулы атома серы и аминогруппы.

Тиамин состоит из 2-х гетероциклических колец - аминопиримидинового и тиазолового. Последнее содержит каталитически активную функциональную группу - карбанион (относительно кислый углерод между серой и азотом).
Тиамин хорошо сохраняется в кислой среде и выдерживает нагревание до высокой температуры. В щелочной среде, например при выпечке теста с добавлением соды или карбоната аммония, он быстро разрушается.

В желудочно-кишечном тракте различные формы витамина гидролизуются с образованием свободного тиамина. Большая часть тиамина всасывается в тонком кишечнике с помощью специфического механизма активного транспорта, остальное его количество расщепляется тиаминазой кишечных бактерий. С током крови всосавшийся тиамин попадает вначале в печень, где фосфорилируется тиаминпирофосфокиназой, а затем переносится в другие органы и ткани.

Существует мнение, что основной транспортной формой тиамина является ТМФ.

Витамин В1, присутствует в различных органах и тканях как в форме свободного тиамина, так и его фосфорных зфиров: тиаминмонофосфата (ТМФ), тиаминдифосфата (ТДФ, синонимы: тиамин пирофосфат, ТПФ, кокарбоксилаза) и тиаминтрифосфата (ТТФ).

ТТФ - синтезируется в митохондриях с помощью фермента ТПФ-АТФ-фосотрансферазы:

Основной коферментной формой (60-80 % от общего внутриклеточного) является ТПФ. ТТФ играет важную роль в метаболизме нервной ткани. При нарушении его образования развивается некротизирующая энцефалопатия. После распада коферментов свободный тиамин выделяется с мочой и определяется в виде тиохрома.

Витамин В, в форме ТПФ является составной частью ферментов, катализирующих реакции прямого и окислительного декарбоксилирования кетокислот.

Участие ТПФ в реакциях декарбоксилирования кетокислот объясняется необходимостью усиления отрицательного заряда углеродного атома карбонила кетокислоты в переходном, нестабильном, состоянии:

Переходное состояние стабилизируется ТПФ путем делокализаиии отрицательного заряда карбо-аниона тиазолового кольца, играющего роль своеобразного электронного стока. Вследствие такого протонирования образуется активный ацетальдегид (гидроксиэтил-ТПФ).


2. Участие ТПФ в реакциях окислительного декарбоксилирования.
Окислительное декарбоксилирование ПВК катализирует пируватде-гидрогеназа. В состав пируватдегидрогеназного комплекса входит несколько структурно связанных ферментных белков и коферментов (см. с. 100). ТПФ катализирует начальную реакцию декарбоксилирования ПВК. Эта реакция идентична катализируемой пируватдекарбоксила-зой. Однако в отличие от последней, пируватдегидрогеназа не превращает промежуточный продукт гидроксиэтил-ТПФ в ацетальдегид. Вместо этого гидроксиэтильная группа переносится к следующему ферменту в мультиферментной структуре пируватдегидрогеназного комплекса.
Окислительное декарбоксилирование ПВК является одной из ключевых реакций в обмене углеводов. В результате этой реакции ПВК, образовавшаяся при окислении глюкозы, включается в главный метаболический путь клетки - цикл Кребса, где окисляется до углекислоты и воды с выделением энергии. Таким образом, благодаря реакции окислительного декарбоксилирования ПВК создаются условия для полного окисления углеводов и утилизации всей заключенной в них энергии. Кроме того, образующаяся при действии ПДГ-комплек-са активная форма уксусной кислоты служит источником для синтеза многих биологических продуктов: жирных кислот, холестерина, стероидных гормонов, ацетоновых тел и других.
Окислительное дскарбоксилирование а-кетоглутатарата катализирует а-кетоглутаратдегидрогеназа. Этот фермент является составной частью цикла Кребса. Строение и механизм действия а-кетоглугарат-дегидрогеназного комплекса схожи с пируватдегидрогеназой, т. е. ТПФ также катализирует начальный этап превращения кетокислоты. Таким образом, от степени обеспеченности клетки ТПФ зависит бесперебойная работа этого цикла.
Помимо окислительных превращений ПВК и а-кетоглутарата, ТПФ принимает участие в окислительном декарбоксилировании кетокислот с разветвленным углеродным скелетом (продукты дезаминирования ва-лина, изолейцина и лейцина). Эти реакции играют важную роль в процессе утилизации аминокислот и, следовательно, белков клеткой.

3. ТПФ - кофермент транскетолазы.
Транскетолаза - фермент пентозофосфатного пути окисления углеводов. Физиологическая роль этого пути заключается в том, что он является основным поставщиком NADFH*H+ и рибозо-5-фосфата. Транскетолаза переносит дву-углеродные фрагменты от ксилулозо-5-фосфата к рибозо-5-фосфату,
что приводит к образованию триозофосфата (3-фосфоглицеринового альдегида) и 7С сахара (седогептулозо-7-фосфата). ТПФ необходим для стабилизации карб-аниона, образующегося при расщеплении связи С2-С3 ксилулозо-5-фосфата.

4. Витамин В1 принимает участие в синтезе ацетилхолина, катализируя в пируватдегидрогеназной реакции образование ацетил-КоА - субстрата ацетилирования холина.

5. Помимо участия в ферментативных реакциях, тиамин может выполнять и некоферментные функции , конкретный механизм которых еще нуждается в уточнении. Полагают, что тиамин участвует в кроветворении, на что указывает наличие врожденных тиаминзависимых анемий, поддающихся лечению высокими дозами этого витамина, а также в стероидогенезе. Последнее обстоятельство позволяет объяснить некоторые эффекты препаратов витамина В, как опосредованных стресс-реакцией.

Переходное состояние стабилизируется ТПФ путем дслокализаиии отрицательного заряда карб-аниона тиазолового кольца, играющего роль своеобразного электронного стока. Вследствие такого протонирования образуется активный ацетальдегид (гидроксиэтил-ТПФ).

Аминокислотные остатки белков обладают слабой способностью осуществлять то, что с легкостью делает ТПФ, поэтому апобелки нуждаются в коферменте. ТПФ жестко связан с апоферментом мульти-ферментных комплексов дегидрогеназ а-оксикетокислот (см. ниже).


Витамины - это низкомолекулярные органические вещества разнообразного строения. Объединены в одну группу по следующим признакам:

1. Витамины абсолютно необходимы организму и в очень небольших количествах.

2. Витамины не синтезируются в организме и должны поступать извне или синтезироваться микрофлорой кишечника.

Витамины играют одинаковую роль во всех формах жизни, но высшие животные утратили способность к их синтезу. Например, аскорбиновая кислота (витамин ”С”) не синтезируется в организмах человека, обезьян и морской свинки, так как в процессе эволюции была утеряна ферментная система синтеза этого витамина из глюкозы. АВИТАМИНОЗ - это заболевание, которое развивается при полном отсутствии того или иного витамина в организме. В настоящее время авитаминозы обычно не встречаются, а бывают ГИПОВИТАМИНОЗЫ при недостатке витамина в организме.

ПРИЧИНЫ РАЗВИТИЯ ГИПО- И АВИТАМИНОЗОВ

Все причины можно разделить на внешние и внутренние.

ВНЕШНИЕ причины гиповитаминозов:

1. Недостаточное содержание витамина в пище (при неправильной обработке пищи, при неправильном хранении пищевых продуктов)

2. Состав рациона питания (например, отсутствие в рационе овощей и фруктов)

3. Не учитывается потребность в том или ином витамине. Например, при белковой диете возрастает потребность в витамине “РР” (при обычном питании он может частично синтезироваться из триптофана). Если человек потребляет много белковой пищи, то может увеличиться потребность в витамине “В 6 “ и снизиться потребность в витамине РР.

4. Социальные причины: урбанизация населения, питание исключительно высокоочищенной и консервированной пищей; наличие антивитаминов в пище. Социальные причины развития авитаминозов существуют в мире. Например, в отдаленных районах Севера, в рационе людей мало овощей и фруктов. Урбанизация также имеет значение, т.к. в пищу потребляется много консервированных и рафинированнных продуктов. В крупных городах люди недостаточно обеспечены солнечным светом - поэтому может быть гиповитаминоз Д.

ВНУТРЕННИЕ причины гиповитаминозов:

1. Физиологическая повышенная потребность в витаминах, например, в период беременности, при тяжелом физическом труде.

2. Длительные тяжелые инфекционные заболевания, а также период выздоровления;

3. Нарушение всасывания витаминов при некоторых заболеваниях ЖКТ, например, при желчнокаменной болезни нарушается всасывание жирорастворимых витаминов;

4. Дисбактериоз кишечника. Имеет значение, так как некоторые витамины синтезируются полностью микрофлорой кишечника (это витамины В 3 , В c , В 6 , Н, В 12 и К);

5. Генетические дефекты некоторых ферментативных систем. Например, витамин Д-резистентный рахит развивается у детей при недостатке ферментов, участвующих в образовании активной формы витамина Д (1,25-диоксихолекальциферола).

КЛАССИФИКАЦИЯ ВИТАМИНОВ

1. Водорастворимые витамины. К этой группе относят витамины С, Р, В 1 , В 2 , В 3 , В C , В 6 , В 12 , РР, Н.

2. Жирорастворимые витамины: А, Д, Е, К.

Большинство водорастворимых витаминов должно поступать регулярно с пищей, т.к. они быстро выводятся или разрушаются в организме.

Жирорастворимые витамины могут депонироваться в организме. Кроме того, они плохо выводятся, поэтому иногда при избытке жирорастворимых витаминов наблюдаются ГИПЕРВИТАМИНОЗЫ - заболевания, связанные с интоксикацией организма высокими дозами жирорастворимых витаминов. Такие заболевания описаны для витаминов А и Д.

Для большинства витаминов известно, что их производные входят в состав коферментов и простетических групп ферментов. Для некоторых витаминов (витамин С) точно известно, в каких реакциях они участвуют, но коферментная функция пока не открыта.

ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ

ВИТАМИН “А”

(ретинол, антиксерофтальмический)

Необходимо знать формулу витамина А.

Наиболее ранний и специфический признак гиповитаминоза А - гемералопия ("куриная слепота") - нарушение сумеречного зрения . Возникает из-за недостатка зрительного пигмента - родопсина. Родопсин содержит в качестве активной группы ретиналь (альдегид витамина А) - находится в палочках сетчатки. Эти клетки (палочки) воспринимают световые сигналы низкой интенсивности.

РОДОПСИН = опсин (белок) + цис-ретиналь.

При возбуждении родопсина светом, цис-ретиналь, в результате ферментативных перестроек внутри молекулы переходит в полностью-транс-ретиналь (на свету). Это приводит к конформационной перестройке всей молекулы родопсина. Родопсин диссоциирует на опсин и транс-ретиналь, что является пусковым механизмом, возбуждающим в окончаниях зрительного нерва импульс, который затем передается в мозг.

В темноте, в результате ферментативных реакций транс-ретиналь вновь превращается в цис-ретиналь и, соединяясь с опсином, образует родопсин.

Витамин А также влияет на процессы роста и развития покровного эпителия . Поэтому при авитаминозе наблюдается поражение кожи, слизистых оболочек и глаз, которое проявляется в патологическом ороговении кожи и слизистых. У больных развивается ксерофтальмия - сухость роговой оболочки глаза, т.к. происходит закупорка слезного канала в результате ороговения эпителия. Так как глаз перестает омываться слезой, которая обладает бактерицидным действием, развиваются конъюнктивиты, изъязвление и размягчение роговицы -кератомаляция . При авитаминозе А может быть также поражение слизистой ЖКТ, дыхательных и мочеполовых путей. Нарушается устойчивость всех тканей к инфекциям. При развитии авитаминоза в детстве - задержка роста.

В настоящее время показано участие витамина А в защите мембран клеток от окислителей - т.е. витамин А обладает антиоксидантной функцией .

Витамин А запасается в печени.

Пищевые источники - печень морских рыб и млекопитающих, желток яиц, цельное молоко, рыбий жир. Овощи и фрукты красно-оранжевого цвета (томаты, морковь и др.) содержат много каротина - водорастворимого предшественника витамина А, имеющего в молекуле 2 иононовых кольца.

В настоящее время, гиповитаминоз А наблюдается у людей с заболеваниями кишечника, поджелудочной железы, при нарушении желчевыделительной функции печени, то есть при заболеваниях, при которых нарушается всасывание жира. Высокие дозы витамина А могут приводить к токсическим эффектам. Характерные проявления гипервитаминоза - воспаление глаз, гиперкератоз, выпадение волос, диспептические явления.

Суточная потребность в витамине А - 1-2.5 мг, в каротине - в 2 раза больше.

ВИТАМИН Д (холекальциферол, антирахитный)

(формулу витамина Д 3 необходимо знать)

Сам витамин Д не обладает витаминной активностью, но он служит предшественником 1,25-дигидрокси-холекальциферола (1,25-дигидроксивитамина Д 3).

Синтез активной формы протекает в два этапа - в печени присоединяется оксигруппа в положении 25, а затем в почках - оксигруппа в положении 1. Из почек активный витамин Д 3 переносится в другие органы и ткани - главным образом в тонкий кишечник и в кости, где витамин Д участвует в регуляции обмена Са и Р. Недостаток витамина Д приводит к развитию нарушений фосфорно-кальциевого обмена и процессов окостенения. В результате у детей развивается рахит , связанный с недостатком Са и Р. Характерные признаки рахита - остеомаляция ("размягчение" костей - запаздывание окостенения), запаздывание закрытия родничков, деформации грудной клетки, позвоночника, конечностей. У таких детей снижен мышечный тонус, наблюдается раздражительность, потливость, выпадение волос.

У взрослых при недостатке витамина Д наблюдается остеопороз - разрежение костной ткани в результате вымывания солей кальция из скелета.

Потребность в витамине Д повышается у беременных.

При благоприятных условиях витамин Д может синтезироваться в организме человека из предшественника - 7-дегидрохолестерина под действием ультрафиолетовых лучей (фотохимическая реакция) в результате разрыва связи в кольце В.

Пищевые источники - рыба, рыбий жир, печень, сливочное масло, желток яиц.

Суточная доза витамина Д 3 - 10-20 мкг. Высокие дозы витамина Д (выше 1,5 мг в сутки) крайне токсичны. При гипервитаминозе кроме интоксикации наблюдается отложение гидроксиапатита в некоторых внутренних органах (кальцификация почек, кровеносных сосудов).

ВИТАМИН К (филлохинон).

(Знать строение хинонового кольца витамина К и радикал!)

Витамин К необходим для нормального синтеза протромбина (фактор II) - предшественника одного из белков системы свертывания - тромбина. Тромбин - это фермент, который катализирует реакцию превращения фибриногена в фибрин - основу кровяного сгустка при активации системы светрывания крови.

При недостатке витамина К синтезируется дефектная молекула протромбина и ряда других факторов свертывания крови. Причина - нарушение ферментативного карбоксилирования глутаминовой кислоты, необходимой для связывания Са 2+ белками системы свертывания. Основное проявление недостаточности - нарушение свертывания крови , в результате которого происходят самопроизвольные паренхиматозные и капиллярные кровотечения.

Авитаминоз, как правило связан с нарушением выделения желчи в ЖКТ (при желчнокаменной болезни).

Пищевые источники - ягоды рябины, капуста, арахисовое масло и др. растительные масла. Витамин К также синтезируется микрофлорой кишечника, поэтому одна из причин гиповитаминозов при недостатке витамина в пище - дизбактериоз кишечника (например, при антибиотикотерапии).

Если больной страдает гиповитаминозом К, например, при некоторых видах желтух, то операции - даже удаление зуба - могут сопровождаться длительным кровотечением.

Синтезирован водорастворимый аналог витамина К - викасол, который используют при лечении гиповитаминозов, связанных с нарушением всасывания витамина К из кишечника.

Известны природные антивитамины К - например, ДИКУМАРИН, САЛИЦИЛОВАЯ кислота, которые применяют при лечении тромбозов, т.к. антивитамины К способны снижать количество протромбина в крови.

Суточная потребность точно не установлена , т.к. витамин синтезируется микрофлорой. Считают, что в сутки потребность около 1 мг .

ВИТАМИН Е (токоферол, витамин размножения).

(Знать строение циклической структуры витамина Е!)

Является антиоксидантом . При недостаточности витамина Е - дегенеративные изменения в печени, нарушение функций биологических мембран. Витамин Е предохраняет липиды клеточных мембран от окисления активными формами кислорода. Авитаминоз проявляется при очень длительном голодании или при стойком нарушении желчевыделительной функции печени (нарушение всасывания жиров). При этом наблюдаются шелушение кожи, мышечная слабость, стерильность - нарушением функции размножения. Поскольку витамин Е широко распространен в природе (растительные масла, семена пшеницы и др. злаков, сливочное масло), то авитаминоз встречается редко.

Суточная потребность - около 10-30 мг .

ВИТАМИН “С”

(аскорбиновая кислота, антицинготный, антискорбутный)

В 1932 г. впервые выделен из сока лимона, через два года искусственно синтезирован. Важное свойство - способность аскорбиновой кислоты легко окисляться.

Биологическая роль витамина “С”

(связана с его участием в окислительно-восстановительных реакциях)

1. Витамин С, являясь сильным восстановителем, играет роль кофактора в реакциях окислительного гидроксилирования, что необходимо для окисления аминокислот пролина и лизина в оксипролин и в оксилизин в процессе биосинтеза коллагена. Коллаген может синтезироваться и без участия витамина С, но такой коллаген не является полноценным (не формирутся его нормальная структура). Поэтому при недостатке витамина С ткани, содержащие много коллагена, становятся непрочными, ломкими. В первую очередь нарушается структура стенок сосудов, повышается их проницаемость, наблюдаются кровоизлияния под кожу и под слизистые оболочки.

2. Участвует в синтезе стероидных гормонов надпочечников.

3. Необходим для всасывания железа.

4. Участвует в неспецифической иммунной защите организма.

Авитаминоз “С” - цинга. Проявления цинги: болезненность, рыхлость и кровоточивость десен, расшатывание зубов, нарушение целостности капилляров - подкожные кровоизлияния, отечность и болезненность суставов, нарушение заживления ран, анемия. Иногда цинга развивается у новорожденных на искусственном вскармливании пастеризованным молоком, в которое не добавлен витамин С. В основе всех изменений при цинге, за исключением анемии, лежит нарушение синтеза коллагена. Анемия связана с нарушением всасывания железа.

В настоящее время цинга не распространена, но весной у многих людей наблюдается недостаток (гиповитаминоз) витамина “С”, что проявляется, например, повышенной утомляемостью, понижением иммунитета.

Основные источники витамина “С” : свежие зеленые овощи и фрукты.

Следует помнить, что витамин С легко разрушается при нагревании, особенно в щелочной среде в присутствии кислорода, ионов железа и меди. Хорошо сохраняется в кислой среде (в квашеной капусте, в клюкве, в ягодах черной смородины и плодах шиповника). При длительном хранении овощей и фруктов содержание в них витамина “С” уменьшается.

Источником витамина С является также хвоя ели и сосны.

Суточная потребность - около 100 мг в сутки.

Лечебная доза - до 1-2 г в сутки.

ВИТАМИН “Р”

(рутин, витамин проницаемости)

Биологическая роль - стабилизация основного вещества соединительной ткани, путем ингибирования фермента гиалуронидазы. При недостатке витамина Р у людей повышается проницаемость кровеносных сосудов, которое сопровождается кровоизлияниями и кровотечениями. Витамин Р усиливает действие витамина С (снижает потребность в нем)

Пищевые источники : зеленые овощи и фрукты, кожура лимона.

Суточная потребность - не установлена

В И Т А М И Н Ы Г Р У П П Ы "B"

ВИТАМИН B 1

(тиамин, антиневритный)

Его формулу необходимо знать.

Производное вит.В 1 - ТДФ (ТПФ) является коферментом пируватдегидрогеназного комплекса (фермента пируваткарбоксилазы), альфа-кетоглутаратдегидрогеназного комплекса и фермента транскетолазы (фермента альфа-тотаратдекарбоксилазы), а также входит в состав кофермента транскетолаз - ферментов неокислительного этапа ГМФ-пути.

При недостаточности вит.В 1 может возникнуть болезнь "бери-бери" , характерная для тех стран Востока, где основным продуктом питания служит очищенный рис и кукуруза. Для этого заболевания характерна мышечная слабость, нарушение моторики кишечника, потеря аппетита, истощение, периферический неврит (характерный признак - человеку больно вставать на стопу - больные ходят “на цыпочках”), спутанность сознания, нарушения работы сердечно-сосудистой системы. При "бери-бери" повышается содержание пирувата в крови.

Пищевые источники витамина В 1 - ржаной хлеб. В кукурузе, рисе, пшеничном хлебе витамин В 1 практически отсутствует. Это объясняется тем, что в зерне ржи тиамин распределен по всему зерну, а в других злаках он содержится только в оболочке зерен.

Суточная потребность - 1.5 мг/сутки.

ВИТАМИН В 2 (рибофлавин)

Витамин В 2 входит в состав флавинмононуклеотида (ФМН) и флавинадениндинуклеотида (ФАД) - простетических групп флавиновых ферментов.

Его биологическая функция в организме - участие в окислительно-восстановительных реакциях в составе флавопротеидов (ФП).

Недостаточность этого витамина часто встречается в России. Особенно часто бывает у людей, которые не употребляют в пищу черный ржаной хлеб. Проявление гиповитаминоза: ангулярные дерматиты в углах рта (“заеда”), глаз. Часто это сопровождается кератитами (воспаление роговицы). В очень тяжелых случаях бывает анемия. Очень часто сочетаются сочетанные гиповитаминозы витаминов "В 2 " и "РР",так как эти витамины содержатся в одних и тех же продуктах.

Пищевые источники : ржаной хлеб, молоко, печень, яйца, овощи желтого цвета, дрожжи.

Суточная потребность : 2-4 мг/сутки.

ФОЛИЕВАЯ КИСЛОТА (В C)

В составе 3 структурных единицы: птеридин, ПАБК (парааминобензойная кислота) и глутаминовая кислота.

Часто ПАБК (парааминобензойную кислоту) тоже называют витамином. Но это неверно. ПАБК - это фактор роста для микроорганизмов, которые синтезируют фолиевую кислоту.

Активный С 1 извлекается из глицина или серина с помощью фермента, в небелковой части которого содержится витамин В c - фолиевая кислота. Фолиевая кислота два раза восстанавливается в организме (к ней присоединяется водород).

ТГФК является коферментом ферментов, переносящих одноуглеродные радикалы.

Из метилен-ТГФК могут образовываться все другие формы активного С 1: формил-ТГФК, метил-ТГФК, метен-ТГФК, оксиметил-ТГФК в результате реакций окисления или восстановления метилен-ТГФК.

Фолиевая кислота в виде тетрагидрофолиевой кислоты является коферментом, участвующим в ферментативных реакциях, связанных с переносом активных одноуглеродных радикалов. Например: биосинтез пуриновых и пиримидиновых мононуклеотидов.

При авитаминозе у человека наблюдается макроцитарная анемия, при которой нарушен синтез ДНК в клетках красного костного мозга, для больных характерна потеря веса.

Пищевые источники: зеленые листья овощей, дрожжи, мясо, шпинат.

Авитаминозы встречаются редко, так как потребность в этом витамине компенсируется за счет микрофлоры кишечника. При некоторых заболеваниях кишечника, когда возникают дисбактериозы, нарушается всасывание фолиевой кислоты.

Суточная потребность: 0.2 - 0.4 мг.

ВИТАМИН В 6 (пиридоксин)

В 6 в форме пиридоксальфосфата является простетической группой трансаминаз и декарбоксилаз аминокислот. Он необходим и для некоторых реакций обмена аминокислот. Поэтому при авитаминозе В 6 наблюдаются нарушения обмена аминокислот.

В6 также участвует в реакциях синтеза гема гемоглобина (синтез d-аминолевулиновой кислоты). Поэтому при недостатке В 6 у человека развивается анемия.

Кроме анемии, наблюдаются дерматиты. Недостаток В 6 может развиться у больных туберкулезом, потому что этих больных лечат препаратами, синтезированными на основе изониазида - это антагонисты витамина В 6 .

Пищевые источники : ржаной хлеб, горох, картофель, мясо, печень, почки.

Суточная потребность взрослого человека: 0.15-0.20 мг.

ПАНТОТЕНОВАЯ КИСЛОТА (витамин В 3)

Молекула пантотеновой кислоты состоит из бета-аланина и 2,4-дигидрокси-диметил-масляной кислоты. Формулу знать необязательно.

Важность этого витамина в том, что он входит в состав HS-KoA (кофермента ацилирования).

Строение КоА: а) тиоэтиламин б) пантотеновая кислота в) 3-фосфоаденозин-5-дифосфат.

HSКоА - кофермент ацилирования, то есть входит в состав ферментов, которые катализируют перенос ацильных остатков. Поэтому В 3 участвует в бета-окислении жирных кислот, окислительном декарбоксилировании альфа-кетокислот, биосинтезе нейтрального жира, липоидов, стероидов, гема, ацетилхолина.

При недостатке пантотеновой кислоты при дисбактериозе у человека развиваются дерматиты , в тяжелых случаях - изменения со стороны желез внутренней секреции, в том числе надпочечников. Также наблюдается депигментация волос, истощение.

Пищевые источники : яичный желток, печень, дрожжи, мясо, молоко.

Суточная потребность : 10мг/сут.

ВИТАМИН В 12 (кобаламин)

(антианемический витамин)

Формулу знать необязательно - стр.158 учебника Коровкина или стр.168 учебника Николаева.

Имеет сложное строение, структура молекулы похожа на гем, но вместо железа - кобальт. В состав В 12 входит также нуклеотидная структура, похожая на АМФ.

Производное витамина В 12 является коферментом. Этот витамин необходим для синтеза нуклеиновых кислот. Он обеспечивает переход оксирибонуклеотидов в дезоксирибонуклеотиды (РНК в ДНК).

Недостаток этого витамина может привести к развитию злокачественной тромбоцитарной анемии, нарушениям функции центральной нервной системы.

Как правило, встречается сочетанный недостаток витамина В 12 и фолиевой кислоты. Анемия развивается не потому, что В 12 мало поступает с пищей, а при отсутствии особого гликопротеина, который называется "внутренний фактор Кастла" и вырабатывается в желудке. Фактор Кастла необходим для всасывания витамина В 12 . При удалении части желудка, гастритах уменьшается выработка фактора Кастла.

Это единственный витамин, который синтезируется только микрофлорой кишечника.

Это единственный водорастворимый витамин, который депонируется в организме (в печени).

Суточная потребность: 2.5-5 мкг.

ВИТАМИН РР (антипеллагрический)

Химическое название: никотинамид. Входит в состав НАД и НАДФ, то есть входит в состав коферментов никотинамидных дегидрогеназ. Его роль - участие в окислительно-восстановительных реакциях. При недостатке РР развивается пеллагра . При пеллагре наблюдаются три “Д”:

Дерматит

Деменция (поражение центральной нервной системы)

Источники РР: мясо, бобовые, орехи, рыба и вообще продукты, богатые белком.

Витамин РР может частично синтезироваться из триптофана.

Если человек съедает много белковой пищи, то потребность в этом витамине снижается. Из 60 гр. белка может синтезироваться 1 мг витамина РР.

Суточная потребность: 15-25 мг/сутки.

ВИТАМИН “Н” (БИОТИН)

Формулу знать обязательно.

В составе молекулы биотина имеются имидазоловое и тиоэфирное кольца, к ним присоединен радикал - валериановая кислота.

Витамин Н входит в состав ферментов карбоксилаз: Ацетил-КоА-карбоксилазы, пируваткарбоксилазы и других.

Всасыванию биотина в кишечнике препятствует овидин - белок, содержащийся в сырых яйцах. При термической обработке яиц происходит днатурация овидина.

При авитаминозе наблюдаются дерматиты, поражения ногтей, анемия. Синтезируется микрофлорой кишечника.

Авитаминозы, связанные с недостатком фолиевой кислоты (В c), пантотеновой кислоты (В 3), биотина (Н), пиридоксина (В 6), кобаламина (В 12) встречаются очень редко, поскольку эти витамины, так же, как и витамин к, синтезируются микрофлорой кишечника. Авитаминозы наблюдаются при дисбактериозе кишечника, при необычной диете или при нарушении всасывания из кишечника.



Ко второй половине XIX столетия было установлено, что пищевая ценность продуктов питания определяется содержанием в них белков, жиров, углеводов, минеральных солей и воды.

Однако практический опыт врачей и клинические наблюдения, а также история морских и сухопутных путешествий указывали на возникновение ряда специфических заболеваний (цинга, бери-бери), связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям.

Важный вклад в развитие учения о витаминах был сделан отечественным врачом Н.И. Луниным в опытах на мышах. Одна группа мышей (контрольная) получала натуральное молоко, а вторая - смесь компонентов молока: белок, жир, молочный сахар, минеральные соли и вода. Спустя некоторое время мыши опытной группы погибали, а мыши контрольной группы развивались нормально. Отсюда следовал вывод о наличии в молоке дополнительных веществ, необходимых для нормальной жизнедеятельности.

Подтверждением правильности вывода Лунина явилось установление причины бери-бери. Оказалось, что люди, употребляющие в пищу неочищенный рис, оставались здоровыми, в отличие от больных бери-бери, которые питались полированным рисом. В 1911 г. польский учёный К. Функ выделил из рисовых отрубей вещество, которое оказывало хороший лечебный эффект при этом заболевании. Поскольку это органическое вещество содержало в своём составе аминогруппу, Функ назвал это вещество витамином, или амином жизни (от лат. vita - жизнь). В настоящее время известно около двух десятков витаминов, которые обеспечивают нормальный рост организма и нормальное протекание физиологических и биохимических процессов. Многие из них входят в состав коферментов (В 1 , В 2 , РР и другие); некоторые витамины выполняют специализированные функции (витамины А, D, Е, K).

Витамины - низкомолекулярные органические соединения различной химической природы

и различного строения, синтезируемые главным образом растениями, частично - микроорганизмами. Для человека витамины - незаменимые пищевые факторы.

Недостаток поступления витаминов с пищей, нарушение их всасывания или нарушение их использования организмом приводит к развитию патологических состояний, называемых гиповитаминозами.

Основные причины гиповитаминозов

Недостаток витаминов в пище;

Нарушение всасывания в ЖКТ;

Врождённые дефекты ферментов, участвующих в превращениях витаминов;

Действие структурных аналогов витаминов (антивитамины).

Потребность человека в витаминах зависит от пола, возраста, физиологического состояния и интенсивности труда. Существенное влияние на потребность человека в витаминах оказывают характер пищи (преобладание углеводов или белков в диете, количество и качество жиров), а также климатические условия.

КЛАССИФИКАЦИЯ ВИТАМИНОВ

По химическому строению и физико-химическим свойствам (в частности, по растворимости) витамины делят на 2 группы.

А. ВОДОРАСТВОРИМЫЕ

Витамин В 1 (тиамин); Витамин В 2 (рибофлавин); Витамин РР (никотиновая кислота, нико-тинамид, витамин В 3);

Пантотеновая кислота (витамин В 5); Витамин В 6 (пиридоксин); Биотин (витамин Н); Фолиевая кислота (витамин В с, В 9); Витамин В 12 (кобаламин); Витамин С (аскорбиновая кислота); Витамин Р (биофлавоноиды).

б. жирорастворимые

Витамин А (ретинол);

Витамин D (холекальциферол);

Витамин Е (токоферол);

Витамин К (филлохинон).

Водорастворимые витамины при их избыточном поступлении в организм, будучи хорошо растворимыми в воде, быстро выводятся из организма.

Жирорастворимые витамины хорошо растворимы в жирах и легко накапливаются в организме при их избыточном поступлении с пищей. Их накопление в организме может вызвать расстройство обмена веществ, называемое гипер-витаминозом, и даже гибель организма.

а. водорастворимые витамины

1. Витамин В 1 (тиамин). Структура витамина включает пиримидиновое и тиазоловое кольца, соединённые метиновым мостиком.

Источники. Витамин В 1 - первый витамин, выделенный в кристаллическом виде К. Функом в 1912 г. Он широко распространён в продуктах растительного происхождения (оболочка семян хлебных злаков и риса, горох, фасоль, соя и др.). В организмах животных витамин В 1 содержится преимущественно в виде дифосфорного эфира тиамина (ТДФ); он образуется в печени, почках, мозге, сердечной мышце путём фосфорилирования тиамина при участии тиаминкиназы и АТФ.

Суточная потребность взрослого человека в среднем составляет 2-3 мг витамина В 1 . Но потребность в нём в очень большой степени зависит от состава и общей калорийности пищи, интенсивности обмена веществ и интенсивности работы. Преобладание уг-

леводов в пище повышает потребность организма в витамине; жиры, наоборот, резко уменьшают эту потребность. Биологическая роль витамина В 1 определяется тем, что в виде ТДФ он входит в состав как минимум трёх ферментов и ферментных комплексов: в составе пируват- и α-кетоглутаратдегидрогеназных комплексов он участвует в окислительном декарбок-силировании пирувата и α-кетоглутарата; в составе транскетолазы ТДФ участвует в пентозофосфатном пути превращения углеводов.

Основной, наиболее характерный и специфический признак недостаточности витамина В 1 - полиневрит, в основе которого лежат дегенеративные изменения нервов. Вначале развивается болезненность вдоль нервных стволов, затем - потеря кожной чувствительности и наступает паралич (бери-бери). Второй важнейший признак заболевания - нарушение сердечной деятельности, что выражается в нарушении сердечного ритма, увеличении размеров сердца и в появлении болей в области сердца. К характерным признакам заболевания, связанного с недостаточностью витамина В 1 , относят также нарушения секреторной и моторной функций ЖКТ; наблюдают снижение кислотности желудочного сока, потерю аппетита, атонию кишечника. 2. Витамин В 2 (рибофлавин). В основе структуры витамина В 2 лежит структура изоаллоксазина, соединённого со спиртом рибитолом.

Рибофлавин представляет собой кристаллы жёлтого цвета (от лат. flavos - жёлтый), слабо растворимые в воде.

Главные источники витамина В 2 - печень, почки, яйца, молоко, дрожжи. Витамин содержится также в шпинате, пшенице, ржи. Частично человек получает витамин В 2 как продукт жизнедеятельности кишечной микрофлоры.

Суточная потребность в витамине В 2 взрослого человека составляет 1,8-2,6 мг.

Биологические функции. В слизистой оболочке кишечника после всасывания витамина происходит образование коферментов FMN и FАD по схеме:

Коферменты FАD и FMN входят в состав флавиновых ферментов, принимающих участие в окислительно-восстановительных реакциях (см. разделы 2, 6, 9, 10).

Клинические проявления недостаточности рибофлавина выражаются в остановке роста у молодых организмов. Часто развиваются воспалительные процессы на слизистой оболочке ротовой полости, появляются длительно незаживающие трещины в углах рта, дерматит носогубной складки. Типично воспаление глаз: конъюнктивиты, васкуля-ризация роговицы, катаракта. Кроме того, при авитаминозе В 2 развиваются общая мышечная слабость и слабость сердечной мышцы.

3. Витамин РР (никотиновая кислота, никотина-мид, витамин В 3)

Источники. Витамин РР широко распространён в растительных продуктах, высоко его содержание в рисовых и пшеничных отрубях, дрожжах, много витамина в печени и почках крупного рогатого скота и свиней. Витамин РР может образовываться из триптофана (из 60 молекул триптофана может образоваться

1 молекула никотинамида), что снижает потребность в витамине РР при увеличении количества триптофана в пище. Суточная потребность в этом витамине составляет для взрослых 15-25 мг, для детей - 15 мг.

Биологические функции. Никотиновая кислота в организме входит в состав NAD и NADP, выполняющих функции коферментов различных дегидрогеназ (см. раздел 2). Синтез NAD в организме протекает в 2 этапа:


NADP образуется из NAD путём фосфорили-рования под действием цитоплазматической NAD-киназы.

NAD + + АТФ → NADP + + АДФ

Недостаточность витамина РР приводит к заболеванию «пеллагра», для которого характерны 3 основных признака: дерматит, диарея, деменция («три Д»). Пеллагра проявляется в виде симметричного дерматита на участках кожи, доступных действию солнечных лучей, расстройств ЖКТ (диарея) и воспалительных поражений слизистых оболочек рта и языка. В далеко зашедших случаях пеллагры наблюдают расстройства ЦНС (деменция): потеря памяти, галлюцинации и бред. 4. Пантотеновая кислота (витамин В) Пантотеновая кислота состоит из остатков D-2,4-дигидрокси-3,3-диметилмасляной кислоты и β-аланина, соединённых между собой амидной связью:

Пантотеновая кислота - белый мелкокристаллический порошок, хорошо растворимый в воде. Она синтезируется растениями и микроорганизмами, содержится во многих продуктах животного и растительного происхождения (яйцо, печень, мясо, рыба, молоко, дрожжи, картофель, морковь, пшеница, яблоки). В кишечнике человека пантотеновая кислота в небольших количествах продуцируется кишечной палочкой. Пантотеновая кислота - универсальный витамин, в ней или её производных нуждаются человек, животные, растения и микроорганизмы.

Суточная потребность человека в пантотеновой

кислоте составляет 10-12 мг. Биологические функции. Пантотеновая кислота используется в клетках для синтеза кофер-ментов: 4-фосфопантотеина и КоА (рис. 3-1). 4-фосфопантотеин - кофермент пальми-тоилсинтазы. КоА участвует в переносе ацильных радикалов в реакциях общего

пути катаболизма (см. раздел 6), активации жирных кислот, синтеза холестерина и кетоновых тел (см. раздел 8), синтеза ацетилглюкозаминов (см. раздел 15), обезвреживания чужеродных веществ в печени (см. раздел 12). Клинические проявления недостаточности витамина. У человека и животных развиваются дерматиты, дистрофические изменения желёз внутренней секреции (например, надпочечников), нарушение деятельности нервной системы (невриты, параличи), дистрофические изменения в сердце, почках, депигментация и выпадение волос и шерсти у животных, потеря аппетита, истощение. Низкий уровень пантотената в крови у людей часто сочетается с другими гиповитаминозами (В 1 , В 2) и проявляется как комбинированная форма гиповитаминоза.

Рис. 3-1. Строение КоА и 4"-фосфопантотеина. 1 - тиоэтаноламин; 2 - аденозил-3"-фосфо-5"-дифосфат; 3 - пантотеновая кислота; 4 - 4"-фосфопантотеин (фосфорилированная пантотеновая кислота, соединённая с тиоэтаноламином).

5. Витамин В 6 (пиридоксин, пиридоксаль, пиридок-самин)

В основе структуры витамина В 6 лежит пиридиновое кольцо. Известны 3 формы витамина В 6 , отличающиеся строением замещающей группы у атома углерода в п-положении к атому азота. Все они характеризуются одинаковой биологической активностью.

Все 3 формы витамина - бесцветные кристаллы, хорошо растворимые в воде.

Источники витамина В 6 для человека - такие продукты питания, как яйца, печень, молоко, зеленый перец, морковь, пшеница, дрожжи. Некоторое количество витамина синтезируется кишечной флорой.

Суточная потребность составляет 2-3 мг.

Биологические функции. Все формы витамина В 6 используются в организме для синтеза кофер-ментов: пиридоксальфосфата и пиридокса-минфосфата. Коферменты образуются путём фосфорилирования по гидроксиметильной группе в пятом положении пиридинового кольца при участии фермента пиридоксаль-киназы и АТФ как источника фосфата.

Пиридоксалевые ферменты играют ключевую роль в обмене аминокислот: катализируют реакции трансаминирования и декарбокси-лирования аминокислот, участвуют в специфических реакциях метаболизма отдельных аминокислот: серина, треонина, триптофана, серосодержащих аминокислот, а также в синтезе гема (см. разделы 9, 12).

Клинические проявления недостаточности витамина. Авитаминоз В 6 у детей проявляется

повышенной возбудимостью ЦНС, периодическими судорогами, что связано, возможно, с недостаточным образованием тормозного медиатора ГАМК (см. раздел 9), специфическими дерматитами. У взрослых признаки гиповитаминоза В 6 наблюдают при длительном лечении туберкулёза изониа-зидом (антагонист витамина В 6). При этом возникают поражения нервной системы (полиневриты), дерматиты. 6. Биотин (витамин Н)

В основе строения биотина лежит тиофено-вое кольцо, к которому присоединена молекула мочевины, а боковая цепь представлена валерьяновой кислотой.

Источники. Биотин содержится почти во всех продуктах животного и растительного происхождения. Наиболее богаты этим витамином печень, почки, молоко, желток яйца. В обычных условиях человек получает достаточное количество биотина в результате бактериального синтеза в кишечнике.

Суточная потребность биотина у человека не превышает 10 мкг.

Биологическая роль. Биотин выполняет кофер-ментную функцию в составе карбоксилаз: он участвует в образовании активной формы

В организме биотин используется в образовании малонил-КоА из ацетил-КоА (см. раздел 8), в синтезе пуринового кольца (см. раздел 10), а также в реакции карбоксилирования пирувата с образованием оксалоацетата (см. раздел 6).

Клинические проявления недостаточности биотина у человека изучены мало, поскольку бактерии кишечника обладают способностью синтезировать этот витамин в необходимых

количествах. Поэтому картина авитаминоза проявляется при дисбактериозах кишечника, например, после приёма больших количеств антибиотиков или сульфамидных препаратов, вызывающих гибель микрофлоры кишечника, либо после введения в рацион большого количества сырого яичного белка. В яичном белке содержится гликопротеин авидин, который соединяется с биотином и препятствует всасыванию последнего из кишечника. Авидин (молекулярная масса 70 000 кД) состоит из четырёх идентичных субъединиц, содержащих по 128 аминокислот; каждая субъединица связывает по одной молекуле биотина. При недостаточности биотина у человека развиваются явления специфического дерматита, характеризующегося покраснением и шелушением кожи, а также обильной секрецией сальных желёз (себорея). При авитаминозе витамина Н наблюдают также выпадение волос и шерсти у животных, поражение ногтей, часто отмечают боли в мышцах, усталость, сонливость и депрессию. 7. Фолиевая кислота (витамин В с витамин В 9) Фолиевая кислота состоит из трёх структурных единиц: остатка птеридина (I), параамино-бензойной (II) и глутаминовой (III) кислот.

Витамин, полученный из разных источников, может содержать 3-6 остатков глутаминовой кислоты. Фолиевая кислота была выделена в 1941 г. из зелёных листьев растений, в связи с чем и получила своё название (от лат. folium - лист).

Источники. Значительное количество этого витамина содержится в дрожжах, а также в печени, почках, мясе и других продуктах животного происхождения.

Суточная потребность в фолиевой кислоте колеблется от 50 до 200 мкг; однако вследствие плохой всасываемости этого витамина рекомендуемая суточная доза - 400 мкг.

Биологическая роль фолиевой кислоты определяется тем, что она служит субстратом

для синтеза коферментов, участвующих в реакциях переноса одноуглеродных радикалов различной степени окисленности: метильных, оксиметильных, формильных и других. Эти коферменты участвуют в синтезе различных веществ: пуриновых нуклеотидов, превращении dУМФ в dГМФ, в обмене глицина и серина (см. разделы 9, 10). Наиболее характерные признаки авитаминоза фолиевой кислоты - нарушение кроветворения и связанные с этим различные формы малокровия (макроцитарная анемия), лейкопения и задержка роста. При гиповитаминозе фолиевой кислоты наблюдают нарушения регенерации эпителия, особенно в ЖКТ, обусловленные недостатком пуринов и пи-римидинов для синтеза ДНК в постоянно делящихся клетках слизистой оболочки. Авитаминоз фолиевой кислоты редко проявляется у человека и животных, так как этот витамин в достаточной степени синтезируется кишечной микрофлорой. Однако использование сульфаниламидных препаратов для лечения ряда заболеваний может вызвать развитие авитаминозов. Эти препараты - структурные аналоги параамино-бензойной кислоты, ингибирующие синтез фолиевой кислоты у микроорганизмов (см. раздел 2). Некоторые производные птери-дина (аминоптерин и метотрексат) тормозят рост почти всех организмов, нуждающихся в фолиевой кислоте. Эти препараты находят применение в лечебной практике для подавления опухолевого роста у онкологических больных. 8. Витамин В 12 (кобаламин) Витамин В 12 был выделен из печени в кристаллическом виде в 1948 г. В 1955 г. Дороти Ходжкен с помощью рентгено-структурного анализа расшифровала структуру этого витамина. За эту работу в 1964 г. ей была присуждена Нобелевская премия. Витамин В 12 - единственный витамин, содержащий в своём составе металл кобальт (рис. 3-2).

Источники. Ни животные, ни растения не способны синтезировать витамин В 12 . Это единственный витамин, синтезируемый почти исключительно микроорганизмами: бактериями, актиномицетами и сине-зелёными водорослями. Из животных тканей наиболее богаты витамином В печень и

почки. Недостаточность витамина в тканях животных связана с нарушением всасывания кобаламина из-за нарушения синтеза внутреннего фактора Касла, в соединении с которым он и всасывается. Фактор Кас-ла синтезируется обкладочными клетками желудка. Это - гликопротеин с молекулярной массой 93 000 Д. Он соединяется с витамином В 12 при участии ионов кальция. Гипоавитаминоз В 12 обычно сочетается с понижением кислотности желудочного сока, что может быть результатом повреждения слизистой оболочки желудка. Гипоавитами-ноз В 12 может развиться также после тотального удаления желудка при хирургических операциях.

Суточная потребность в витамине В 12 крайне мала и составляет всего 1-2 мкг.

Витамин В 12 служит источником образования двух коферментов: метилкобаламина в цитоплазме и дезоксиаденозилкобаламина в митохондриях (рис. 3-2).

Метил-В 12 - кофермент, участвующий в образовании метионина из гомоцистеина. Кроме того, метил-В 12 принимает участие в превращениях производных фолиевой кислоты, необходимых для синтеза нуклео-тидов - предшественников ДНК и РНК.

Дезоксиаденозилкобаламин в качестве ко-фермента участвует в метаболизме жирных кислот с нечётным числом углеродных атомов и аминокислот с разветвлённой углеводородной цепью (см. разделы 8, 9).

Основной признак авитаминоза В 12 - макроци-тарная (мегалобластная) анемия. Для этого заболевания характерны увеличение размеров эритроцитов, снижение количества эритроцитов в кровотоке, снижение концентрации гемоглобина в крови. Нарушение кроветворения связано в первую очередь с нарушением обмена нуклеиновых кислот, в частности синтеза ДНК в быстроделящихся клетках кроветворной системы. Помимо нарушения кроветворной функции, для авитаминоза В 12 специфично также расстройство деятельности нервной системы, объясняемое токсичностью метилмалоновой кислоты, накапливающейся в организме при распаде жирных кислот с нечётным числом углеродных атомов, а также некоторых аминокислот с разветвлённой цепью.

9. Витамин С (аскорбиновая кислота)

Аскорбиновая кислота - лактон кислоты, близкой по структуре к глюкозе. Существует в двух формах: восстановленной (АК) и окисленной (дегидроаскорбиновой кислотой, ДАК).

Обе эти формы аскорбиновой кислоты быстро и обратимо переходят друг в друга и в качестве коферментов участвуют в окислительно-восстановительных реакциях. Аскорбиновая кислота может окисляться кислородом воздуха, перок-сидом и другими окислителями. ДАК легко восстанавливается цистеином, глутатионом, сероводородом. В слабощелочной среде происходят разрушение лактонового кольца и потеря биологической активности. При кулинарной обработке пищи в присутствии окислителей часть витамина С разрушается.

Источники витамина С - свежие фрукты,

овощи, зелень (табл. 3-1). Суточная потребность человека в витамине С

составляет 50-75 мг. Биологические функции. Главное свойство аскорбиновой кислоты - способность легко окисляться и восстанавливаться. Вместе с ДАК она образует в клетках окислительно-восстановительную пару с редокс-потенци-алом +0,139 В. Благодаря этой способности аскорбиновая кислота участвует во многих реакциях гидроксилирования: остатков Про и Лиз при синтезе коллагена (основного белка соединительной ткани), при гидрок-силировании дофамина, синтезе стероидных гормонов в коре надпочечников (см. разделы

В кишечнике аскорбиновая кислота восстанавливает Fе 3+ в Fe 2+ , способствуя его всасыванию, ускоряет освобождение железа из ферритина (см. раздел 13), способствует превращению фолата в коферментные формы. Аскорбиновую кислоту относят к природным антиоксидантам (см. раздел 8).

Рис. 3-2. Структура витамина В 12 (1) и его коферментные формы - метилкобаламин (2) и 5-дезоксиаде-нозилкобаламин (3).

Таблица 3-1. Содержание аскорбиновой кислоты в некоторых пищевых продуктах и растениях

Большое значение этой роли витамина С придавал известный американский учёный Л. Полинг, дважды лауреат Нобелевской премии. Он рекомендовал использовать для профилактики и лечения ряда заболеваний (например, простудных) большие дозы аскорбиновой кислоты (2-3 г). Клинические проявления недостаточности витамина С. Недостаточность аскорбиновой кислоты приводит к заболеванию, называемому цингой (скорбут). Цинга, возникающая у человека при недостаточном содержании в пищевом рационе свежих фруктов и овощей, описана более 300 лет назад, со времени проведения длительных морских плаваний и северных экспедиций. Это заболевание связано с недостатком в пище витамина С. Болеют цингой только человек, приматы и

морские свинки. Главные проявления авитаминоза обусловлены в основном нарушением образования коллагена в соединительной ткани. Вследствие этого наблюдают разрыхление дёсен, расшатывание зубов, нарушение целостности капилляров (сопровождающееся подкожными кровоизлияниями). Возникают отёки, боль в суставах, анемия. Анемия при цинге может быть связана с нарушением способности использовать запасы железа, а также с нарушениями метаболизма фолиевой кислоты. 10. Витамин Р (биофлавоноиды) В настоящее время известно, что понятие «витамин Р» объединяет семейство биофлавоноидов (катехины, флавононы, флавоны). Это очень разнообразная группа растительных полифеноль-ных соединений, влияющих на проницаемость сосудов сходным образом с витамином С.

Наиболее богаты витамином Р лимоны, гречиха, черноплодная рябина, чёрная смородина, листья чая, плоды шиповника.

Суточная потребность для человека точно не

установлена. Биологическая роль флавоноидов заключается в стабилизации межклеточного матрик-са соединительной ткани и уменьшении проницаемости капилляров. Многие представители группы витамина Р обладают гипотензивным действием. Клиническое проявление гипоавитаминоза витамина Р характеризуется повышенной кровоточивостью дёсен и точечными подкожными кровоизлияниями, общей слабостью, быстрой утомляемостью и болями в конечностях. В таблице 3-2 перечислены суточные потребности, коферментные формы, основные биологические функции водорастворимых витаминов, а также характерные признаки авитаминозов.

Б. ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ

1. Витамин А (ретинол) - циклический, ненасыщенный, одноатомный спирт.

Источники. Витамин А содержится только в животных продуктах: печени крупного рогатого скота и свиней, яичном желтке, молочных

Строение провитамина А (1), витамина А (2) и его производных (3, 4)

Таблица 3-2. Водорастворимые витамины

продуктах; особенно богат этим витамином рыбий жир. В растительных продуктах (морковь, томаты, перец, салат и др.) содержатся каротиноиды, являющиеся провитаминами А. В слизистой оболочке кишечника и клетках печени содержится специфический фермент каротиндиоксигеназа, превращающий кароти-ноиды в активную форму витамина А. Суточная потребность витамина А взрослого человека составляет от 1 до 2,5 мг витамина или от 2 до 5 мг β-каротинов. Обычно активность витамина А в пищевых продуктах выражается в международных единицах; одна международная единица (МЕ) витамина А эквивалентна 0,6 мкг β-каротина и 0,3 мкг витамина А.

Биологические функции витамина А. В организме ретинол превращается в ретиналь и ретиное-вую кислоту, участвующие в регуляции ряда функций (рост и дифференцировка клеток); они также составляют фотохимическую основу акта зрения.

Наиболее детально изучено участие витамина А в зрительном акте (рис. 3-3). Светочувствительный аппарат глаза - сетчатка. Падающий на сетчатку свет адсорбируется и трансформируется пигментами сетчатки в другую форму энергии. У человека сетчатка содержит 2 типа рецепторных клеток: палочки и колбочки. Первые реагируют на слабое (сумеречное) освещение, а колбочки - на хорошее освещение (дневное зрение).

Рис. 3-3. Схема зрительного цикла. 1 - цис-ретиналь в темноте соединяется с белком опсином, образуя родопсин; 2 - под действием кванта света происходит фотоизомеризация 11-цис-ретиналя в транс-ретиналь; 3 - транс-ретиналь-опсин распадается на транс-ретиналь и опсин; 4 - поскольку пигменты встроены в мембраны светочувствительных клеток сетчатки, это приводит к местной деполяризации мембраны и возникновению нервного импульса, распространяющегося по нервному волокну; 5 - заключительный этап этого процесса - регенерация исходного пигмента. Это происходит при участии ретинальизомеразы через стадии: транс-ретиналь - трансретинол - цис-ретинол - цис-ретиналь; последний вновь соединяется с опсином, образуя родопсин.

Ретиноевая кислота, подобно стероидным гормонам, взаимодействует с рецепторами в ядре клеток-мишеней. Образовавшийся комплекс связывается с определёнными участками ДНК и стимулирует транскрипцию генов (см. раздел 4). Белки, образующиеся в результате стимуляции генов под влиянием ретиноевой кислоты, влияют на рост, дифференцировку, репродукцию и эмбриональное развитие (рис. 3-4).

Основные клинические проявления гиповитаминоза А. Наиболее ранний и характерный признак недостаточности витамина А у людей и экспериментальных животных - нарушение сумеречного зрения (гемералопия, или «куриная» слепота). Специфично для авитаминоза А поражение глазного яблока - ксерофталь-мия, т.е. развитие сухости роговой оболочки глаза как следствие закупорки слёзного канала в связи с ороговением эпителия. Это, в свою очередь, приводит к развитию конъюнктивита, отёку, изъязвлению и размягчению роговой оболочки, т.е. к кератома-ляции. Ксерофтальмия и кератомаляция при отсутствии соответствующего лечения могут привести к полной потере зрения.

У детей и молодых животных при авитаминозе А наблюдают остановку роста костей, кератоз эпителиальных клеток всех органов и, как следствие этого, избыточное ороговение кожи, поражение эпителия ЖКТ, мочеполовой системы и дыхательного аппарата. Прекращение роста костей черепа приводит к повреждению тканей ЦНС, а также к повышению давления спинномозговой жидкости. 2. Витамины группы D (кальциферолы) Кальциферолы - группа химически родственных соединений, относящихся к производным стеринов. Наиболее биологически активные витамины - D 2 и D 3 . Витамин D 2 (эргокальцифе-рол), производное эргостерина - растительного стероида, встречающегося в некоторых грибах, дрожжах и растительных маслах. При облучении пищевых продуктов УФО из эргостерина получается витамин D 2 , используемый в лечебных целях. Витамин D 3 , имеющийся у человека и животных, - холекальциферол, образующийся в коже человека из 7-дегидрохолестерина под действием УФ-лучей (рис. 3-5).

Витамины D 2 и D 3 - белые кристаллы, жирные на ощупь, нерастворимые в воде, но хорошо растворимые в жирах и органических растворителях.

Источники. Наибольшее количество витамина D 3 содержится в продуктах животного происхождения: сливочном масле, желтке яиц, рыбьем жире.

Рис. 3-4. Действие ретиноидов в организме. Вещества (названия в рамках) - компоненты пищи.

Рис. 3-5. Схема синтеза витаминов D 2 и D 3 . Провитамины D 2 и D 3 - стерины, у которых в кольце В две двойные связи. При воздействии света в процессе фотохимической реакции происходит расщепление кольца В. А - 7-дегидрохолестерин, провитамин D 3 (синтезируется из холестерина); Б - эргостерин - провитамин D 2 .

Суточная потребность для детей 12-25 мкг (500-1000 МЕ), для взрослого человека потребность значительно меньше.

Биологическая роль. В организме человека витамин D 3 гидроксилируется в положениях 25 и 1 и превращается в биологически активное соединение 1,25-дигидроксихолекальцифе-рол (кальцитриол). Кальцитриол выполняет гормональную функцию, участвуя в регуляции обмена Са 2+ и фосфатов, стимулируя всасывание Са 2+ в кишечнике и кальцифи-

кацию костной ткани, реабсорбцию Са 2+ и фосфатов в почках. При низкой концентрации Са 2+ или высокой концентрации D 3 он стимулирует мобилизацию Са 2+ из костей (см. раздел 11). Недостаточность. При недостатке витамина D у детей развивается заболевание «рахит», характеризуемое нарушением кальцифика-ции растущих костей. При этом наблюдают деформацию скелета c характерными изменениями костей (Х- или о-образная форма

ног, «чётки» на рёбрах, деформация костей черепа, задержка прорезывания зубов). Избыток. Поступление в организм избыточного количества витамина D 3 может вызвать гипервитаминоз D. Это состояние характеризуется избыточным отложением солей кальция в тканях лёгких, почек, сердца, стенках сосудов, а также остеопорозом с частыми переломами костей. 3. Витамины группы Е (токоферолы) Витамин Е был выделен из масла зародышей пшеничных зёрен в 1936 г. и получил название токоферол. В настоящее время известно семейство токоферолов и токотриенолов, найденных в природных источниках. Все они - метильные производные исходного соединения токола, по строению очень близки и обозначаются буквами греческого алфавита. Наибольшую биологическую активность проявляет α-токоферол.

Токоферолы представляют собой маслянистую жидкость, хорошо растворимую в органических растворителях.

α-Токоферол (5,7,8-триметилтокол)

Источники витамина Е для человека - растительные масла, салат, капуста, семена злаков, сливочное масло, яичный желток.

Суточная потребность взрослого человека в витамине примерно 5 мг.

Биологическая роль. По механизму действия токоферол является биологическим анти-оксидантом. Он ингибирует свободноради-кальные реакции в клетках и таким образом препятствует развитию цепных реакций перекисного окисления ненасыщенных жирных кислот в липидах биологических мембран и других молекул, например ДНК (см. раздел 8). Токоферол повышает биологическую активность витамина А, защищая от окисления ненасыщенную боковую цепь.

Клинические проявления недостаточности витамина

Е у человека до конца не изучены. Известно положительное влияние витамина Е при ле-

чении нарушения процесса оплодотворения, при повторяющихся непроизвольных абортах, некоторых форм мышечной слабости и дистрофии. Показано применение витамина Е для недоношенных детей и детей, находящихся на искусственном вскармливании, так как в коровьем молоке в 10 раз меньше витамина Е, чем в женском. Дефицит витамина Е проявляется развитием гемолитической анемии, возможно из-за разрушения мембран эритроцитов в результате ПОЛ. 4. Витамины K (нафтохиноны) Витамин К существует в нескольких формах в растениях как филлохинон (К 1), в клетках кишечной флоры как менахинон (К 2).

пуста, шпинат, корнеплоды и фрукты) и животные (печень) продукты. Кроме того, он синтезируется микрофлорой кишечника. Обычно авитаминоз К развивается вследствие нарушения всасывания витамина К в кишечнике, а не в результате его отсутствия в пище.

Суточная потребность в витамине взрослого человека составляет 1-2 мг.

Биологическая функция витамина К связана с его участием в процессе свёртывания крови (рис. 3-6). Он участвует в активации факторов свёртывания крови: протромбина (фактор II), проконвертина (фактор VII), фактора Кристмаса (фактор IX) и фактора Стюарта (фактор X). Эти белковые факторы синтезируются как неактивные предшественники. Один из этапов активации - их карбоксилирование по остаткам глутами-новой кислоты с образованием γ-карбок-сиглутаминовой кислоты, необходимой для связывания ионов кальция (см. раздел 13).

Рис. 3-6. Роль витамина К в свёртывании крови.

Витамин К участвует в реакциях карбокси-лирования в качестве кофермента. Для лечения и предупреждения гиповитаминоза К используют синтетические производные нафтохинона: менадион, викасол, синкавит.

Основное проявление авитаминоза К - сильное кровотечение, часто приводящее к шоку и гибели организма. В таблице 3-3 перечислены суточные потребности и биологические функции жирорастворимых витаминов, а также характерные признаки авитаминозов.

Таблица 3-3. Жирорастворимые витамины

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то